Brazillian solar PV sector to experience combined effect of falling economy and COVID-19, says GlobalData

Increasing import costs, fall in electricity consumption and indefinitely postponed auctions are likely to impact the momentum of the Brazillian solar PV sector, with the annual installed capacity expected to decline to 0.7GW in 2020 from 1.3 GW in 2019, says GlobalData, a leading data and analytics company.

The weakening of the Brazilian economy due to the pandemic is causing an increase in import costs, which would impact the viability of projects that have secured financing. The slowing of the economy will make it difficult for the developers to close the financing deals and stall the market growth.

A big driver of the solar PV market in Brazil is the A-4 and A-6 auctions, which of late, have resulted in substantial PV capacities being contracted. The government’s strategy, before the COVID-19 outbreak, was to implement the A-4 public auction in the first half of 2020 and the A-6 auction in the second half and to repeat the same in 2021. With the outbreak of the pandemic, these auctions are to be held when normalcy is restored, which is hard to predict.

Somik Das, Senior Power Analyst at GlobalData, comments: “Brazillian solar PV developers generally procure most of the PV components from China. With the outbreak of the pandemic, the delivery of the PV components is experiencing delays because of disruption in the global supply chain. Although the country has a domestic manufacturing industry, the manufactured panels are on average 20% more expensive than imports, due to the taxes and the lower production scale in comparison to China.

“Added to this, the Brazillian Real has experienced a significant drop against the USD going from 4.1 in December 2019 to 5.3 in April 2020. The depreciation of the local currency will make it difficult for project developers and owners to seek financing from international capital markets.”

The rise of solar

With much of the attention on the potential for wind, solar generation is also set to play a significant role in Ireland’s renewable energy revolution.

The Government has approved the inclusion of a solar category in RESS, subject to state aid approval, which would represent approximately 10pc of the overall auction.

According to data provided by Stephen Walsh, co-founder of PHR, a market intelligence company, there have been 334 planning applications submitted in Ireland for solar developments, with 263 granted. The research excluded domestic and small-scale commercial/industrial installations.

Elgin Energy, a solar energy developer, has plans to spend up to €400m developing solar farms in Ireland over the next five years.

Ronan Kilduff, managing director of Elgin Energy in Ireland, said that solar’s role in the Climate Action Plan would be to help balance the demand the energy system will face.

He believes that the first RESS auction will be for 3,000 gigawatt hours and, on that basis, solar will account for over 10pc.

Kilduff believes that Elgin will have around 80MW of capacity to bid into the auction, which could be worth up to €60m.

“We believe Eirgrid is looking for technology-specific because they don’t want to be taken up with just wind, as it can be harder to manage,” he said.

“If you think about the wind that is already deployed on the Irish system, they want a balanced portfolio approach where solar is more predictable.

“We produce power from sunrise to sunset. The wind portfolio comes on in the late evening and through the night, principally in winter. The value of the solar power curve is very reliable. [It peaks] when industry and the population are up using electricity.”

The future of solar energy in Ireland

Drawn from a range of sectors and government departments, Ireland’s National Mitigation Plan outlined a pathway towards decarbonisation for the first time. The document, published in 2017, highlighted a sharp decline in costs of solar photovoltaic (PV) globally, with increased levels of solar (rooftop and mounted) and microgeneration technologies offering further contributions to Ireland’s renewable energy portfolio.

The National Mitigation Plan also confirmed that the prices of such technology will see a continued global decline. Regardless of such a decline, it is generally accepted that the use of solar technology in Ireland is less efficient than, for example, in southern Europe, where solar penetration is stronger. Indeed, offshore wind has traditionally been the most cost-competitive renewable electricity technology in Ireland, accounting for 22.8 per cent of overall electricity generation in 2015.

Despite this, it is recognised that other energy sources, such as solar, can play an important role in Ireland’s future energy mix. The deployment of solar technology in Ireland is intended to diversify the country’s renewable generation portfolio over a 10-year period between 2020 and 2030, with a particular focus on cost efficiency and effectiveness. The convenience of solar PV, which can be deployed in roof-mounted or ground-mounted installations, has been highlighted as a means of empowering the Irish citizen to take control and ownership over energy production and consumption.

The benefits of solar PV to Ireland’s energy mix have been recognised by the Department of Communications, Climate Action and Environment (DCCAE), who considered the technology as part of the Renewable Electricity Support Scheme (RESS) which was published in July 2018. The new scheme will provide support to renewable energy projects in Ireland, whilst increasing energy security and sustainability. The Government’s objective of diversifying Ireland’s energy mix may play to the advantage of the solar sector at first auction, as it seeks to ramp up investment in nascent technologies.

Financial support is currently available for solar thermal heating technology through grants offered by the Sustainable Energy Authority of Ireland (SEAI). Small and Medium Enterprises (SMEs) and large industry can both benefit from these grants. Similarly, households can also avail of grant support for solar thermal under the Better Energy Homes Scheme. Domestic solar thermal systems are designed to meet 50-60 per cent of a household’s hot water requirement across the year. The SEAI have approved 375,000 applications for the Better Energy Homes Scheme since its inception.

Supporting solar in Ireland

Support has also been offered by the SEAI in the form of a Residential Rooftop Solar PV Scheme, which was announced in August 2018. The scheme provides a contribution of up to €3,800 towards total installation costs, and has been highlighted as a measure which would bring more jobs to Ireland’s growing solar sector. The SEAI have argued that such a strategy will encourage self-consumption towards 100 per cent, whilst enhancing public understanding and uptake of solar.

Similarly, the Warmer Home Energy scheme offers a broad range of measures free to householders in need of energy efficiency upgrades, totalling to an average of €3,000. Some of the measures included in the scheme are attic and cavity wall insulation; draught proofing; lagging jackets and low energy light bulbs.

ESB Networks recorded over 500 applications for the installation of solar projects in the Republic of Ireland, according to a completed application list published in 2018. These installations would offer a combined total of over 4,000MW. It is estimated that 1,500MW is achievable by 2022, representing 5 per cent of Ireland’s electricity demand. The ISEA estimates that 2GW solar power could create over 7,000 jobs whilst meeting 7 per cent of the country’s electricity demand.

Aside from this economic contribution, such solar growth could greatly assist Ireland in meeting its EU target of generating 16 per cent of energy requirement from renewables by 2020. Current plans outline that this will be met by 40 per cent from renewable electricity, 12 per cent from renewable heat and 10 per cent from the renewable transport sector. Regardless of such measures, it is widely predicted that Ireland will fail in its 2020 objectives, with current projections lagging far behind at only 13.2 per cent.

Also increasingly the viability of green energy products in Ireland is the lifting of an EU ban on Chinese solar imports. David Maguire of the ISEA has argued that the move could bring down the cost of new Irish solar projects by 10 per cent, whilst encouraging greater supply and competition. The ending of solar import controls from China comes following a 2013 ban, after it was accused of selling solar technology at artificially low prices to shut down European competition.

Planning permission for solar farms has been sought in over 220 applications to local authorities since June 2015. Typical applications submitted to local authorities are from solar farms ranging in size from 20 to 30 acres and offer an average of 5MW of electrical energy. The majority of such applications were submitted with the expectation of a Government support mechanism which would make building more commercially viable. However, such a system has yet to be introduced.

New perspectives

Of particular importance to those considering new solar projects is the proximity of their proposed site to the local substation. Current Irish requirements necessitate a direct connection to the local grid network, unlike many examples across the United Kingdom and Germany where access is provided by a direct connection via an overhead line across sites.

Many factors can party explain the rapid deployment of solar PV across the world in recent years. These include the convenience of the panels, combined with an international push to embrace renewable energy sources. However, two major factors which explain the rise of solar include a drastic drop in module price from $70/watt in 1970 to $0.278/watt as of June 2018, as well as generous government subsidies. Advocates of this increasingly prominent renewable energy source argue that it will have a minimal impact upon the environment, whilst delivering significant benefits to the consumer and the Irish economy as a whole.

It is therefore clear that with the correct support, promotion and subsidisation, solar holds the potential to become one of the most economically viable renewable energy sources on the island of Ireland. This concept is supported by the Irish Solar Energy Association (ISEA), who argue that solar, as an energy source, has been traditionally overlooked, with greater focus placed on other sources such as wind.

Despite this fact, solar is now internationally recognised as an integral component of the renewable energy mix and may create a pathway through which Ireland could accelerate the rollout of renewable energy at an affordable cost, whilst also creating much needed employment opportunities in the country’s energy sector.

The benefits of solar energy extend far beyond the provision of clean, ‘green’ energy and electricity, according to ISEA. The organisation argues that the introduction of solar PV should be viewed within the broader context of Ireland’s energy mix, where the energy source can complement other renewable technologies such as tidal and wind. Indeed, advocates of solar PV agree that it significantly contributes to the creation of a diverse and secure supply of electricity, whilst generating income for farmers and supporting economic and social growth.

The substantial decline in the costs of solar PV technology have not only benefitted the consumer. Decreasing prices combined with increased interest have encouraged further innovation in the solar sector. Evidence suggests that applications for solar projects are rapidly expanding and range from solar panels in electric vehicles to solar walls in buildings. Beyond the benefits of innovation, the expansion of solar PV is also predicted to add further value to the economic, environmental and social policy objectives of the Irish Government.

The ISEA estimates that an annual subsidy of €30 million will be required to make the solar sector competitive in Ireland. This estimate supports the fact that Ireland is as geographically well-placed as Germany regarding the employment of solar energy. However, it is also generally recognised that solar energy brings with it certain complications which frequently apply to other renewable energy sources. Developing efficient storage systems has been highlighted as a major challenge that must be met to move this emerging technology forward. Indeed, the possibility of developing such a system has been greatly enhanced by the global decline in energy storage price.

Incentives for sustainability

Whilst the Irish Government acknowledges solar sector analysis which demonstrates that solar PV technology costs fell by 80 per cent from 2008 to 2013, former Minister for Communications, Climate Action and Environment, Denis Naughten, argued for more time to confirm whether this decrease is indicative of a more complex underlying trend. Rather than incentivise the market by introducing a tariff that encourages exports into the national grid, the Irish Government has instead sought to imbed self-consumption as a central concept of its grant scheme.

December 2017 saw the Department for Communications, Climate Action and Environment announce Cabinet approval for the introduction of a Support Scheme for Renewable Heat. The Renewable Heat Incentive (RHI) saw an allocation of €7 million from Budget 2018 to fund the initial stages of the scheme. The first applications opened in the summer of 2018, despite calls from the Irish Farmer’s Association to fast track its introduction so to allow for its implementation in the first quarter of 2018. RHI is presently exchequer-funded, and solar-thermal technology is eligible for support under the scheme. Budget 2019 has proposed further measures to support renewable projects, including a €500 million Climate Action Fund and a €500 million Disruptive Technologies Fund.

Solar PV takes its place as one of the most versatile technologies to have emerged in recent times. Indeed, its versatility has been recognised as a key driver for more widespread application of the technology in the future. Solar PV’s position as a renewable technology that can be integrated into the built environment make it an ideal contender for urban-based energy projects. Conversely, the non-intrusive nature of the technology also presents itself as suitable for deployment in large projects in rural areas.

The versatility of solar PV has led to a belief held by organisations such as the ISEA that it can act as an interim mitigation measure while the Government determines how to diversify its energy portfolio, whilst also serving as a long-term method of broadening Ireland’s energy mix.

Simple, solar-powered water desalination

A completely passive solar-powered desalination system developed by researchers at MIT and in China could provide more than 1.5 gallons of fresh drinking water per hour for every square meter of solar collecting area. Such systems could potentially serve off-grid arid coastal areas to provide an efficient, low-cost water source.

The system uses multiple layers of flat solar evaporators and condensers, lined up in a vertical array and topped with transparent aerogel insulation. It is described in a paper appearing today in the journal Energy and Environmental Science, authored by MIT doctoral students Lenan Zhang and Lin Zhao, postdoc Zhenyuan Xu, professor of mechanical engineering and department head Evelyn Wang, and eight others at MIT and at Shanghai Jiao Tong University in China.

The key to the system’s efficiency lies in the way it uses each of the multiple stages to desalinate the water. At each stage, heat released by the previous stage is harnessed instead of wasted. In this way, the team’s demonstration device can achieve an overall efficiency of 385 percent in converting the energy of sunlight into the energy of water evaporation.

The device is essentially a multilayer solar still, with a set of evaporating and condensing components like those used to distill liquor. It uses flat panels to absorb heat and then transfer that heat to a layer of water so that it begins to evaporate. The vapor then condenses on the next panel. That water gets collected, while the heat from the vapor condensation gets passed to the next layer.

Whenever vapor condenses on a surface, it releases heat; in typical condenser systems, that heat is simply lost to the environment. But in this multilayer evaporator the released heat flows to the next evaporating layer, recycling the solar heat and boosting the overall efficiency.

“When you condense water, you release energy as heat,” Wang says. “If you have more than one stage, you can take advantage of that heat.”

Adding more layers increases the conversion efficiency for producing potable water, but each layer also adds cost and bulk to the system. The team settled on a 10-stage system for their proof-of-concept device, which was tested on an MIT building rooftop. The system delivered pure water that exceeded city drinking water standards, at a rate of 5.78 liters per square meter (about 1.52 gallons per 11 square feet) of solar collecting area. This is more than two times as much as the record amount previously produced by any such passive solar-powered desalination system, Wang says.

Theoretically, with more desalination stages and further optimization, such systems could reach overall efficiency levels as high as 700 or 800 percent, Zhang says.

Unlike some desalination systems, there is no accumulation of salt or concentrated brines to be disposed of. In a free-floating configuration, any salt that accumulates during the day would simply be carried back out at night through the wicking material and back into the seawater, according to the researchers.

Their demonstration unit was built mostly from inexpensive, readily available materials such as a commercial black solar absorber and paper towels for a capillary wick to carry the water into contact with the solar absorber. In most other attempts to make passive solar desalination systems, the solar absorber material and the wicking material have been a single component, which requires specialized and expensive materials, Wang says. “We’ve been able to decouple these two.”

The most expensive component of the prototype is a layer of transparent aerogel used as an insulator at the top of the stack, but the team suggests other less expensive insulators could be used as an alternative. (The aerogel itself is made from dirt-cheap silica but requires specialized drying equipment for its manufacture.)

Wang emphasizes that the team’s key contribution is a framework for understanding how to optimize such multistage passive systems, which they call thermally localized multistage desalination. The formulas they developed could likely be applied to a variety of materials and device architectures, allowing for further optimization of systems based on different scales of operation or local conditions and materials.

One possible configuration would be floating panels on a body of saltwater such as an impoundment pond. These could constantly and passively deliver fresh water through pipes to the shore, as long as the sun shines each day. Other systems could be designed to serve a single household, perhaps using a flat panel on a large shallow tank of seawater that is pumped or carried in. The team estimates that a system with a roughly 1-square-meter solar collecting area could meet the daily drinking water needs of one person. In production, they think a system built to serve the needs of a family might be built for around $100.

The researchers plan further experiments to continue to optimize the choice of materials and configurations, and to test the durability of the system under realistic conditions. They also will work on translating the design of their lab-scale device into a something that would be suitable for use by consumers. The hope is that it could ultimately play a role in alleviating water scarcity in parts of the developing world where reliable electricity is scarce but seawater and sunlight are abundant.

The research team included Bangjun Li, Chenxi Wang and Ruzhu Wang at the Shanghai Jiao Tong University, and Bikram Bhatia, Kyle Wilke, Youngsup Song, Omar Labban, and John Lienhard, who is the Abdul Latif Jameel Professor of Water at MIT. The research was supported by the National Natural Science Foundation of China, the Singapore-MIT Alliance for Research and Technology, and the MIT Tata Center for Technology and Design.